In vivo assessment of the impact of efflux transporter on oral drug absorption using portal vein-cannulated rats.
نویسندگان
چکیده
The purpose of this study was to evaluate the impact of intestinal efflux transporters on the in vivo oral absorption process. Three model drugs-fexofenadine (FEX), sulfasalazine (SASP), and topotecan (TPT)-were selected as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and P-gp and BCRP substrates, respectively. The drugs were orally administered to portal vein-cannulated rats after pretreatment with zosuquidar (ZSQ), P-gp inhibitor, and/or Ko143, BCRP inhibitor. Intestinal availability (Fa·Fg) of the drugs was calculated from the difference between portal and systemic plasma concentrations. When rats were orally pretreated with ZSQ, Fa·Fg of FEX increased 4-fold and systemic clearance decreased to 75% of the control. In contrast, intravenous pretreatment with ZSQ did not affect Fa·Fg of FEX, although systemic clearance decreased significantly. These data clearly show that the method presented herein using portal vein-cannulated rats can evaluate the effects of intestinal transporters on Fa·Fg of drugs independently of variable systemic clearance. In addition, it was revealed that 71% of FEX taken up into enterocytes underwent selective efflux via P-gp to the apical surface, while 79% of SASP was effluxed by Bcrp. In the case of TPT, both transporters were involved in its oral absorption. Quantitative analysis indicated a 3.5-fold higher contribution from Bcrp than P-gp. In conclusion, the use of portal vein-cannulated rats enabled the assessment of the impact of efflux transporters on intestinal absorption of model drugs. This experimental system is useful for clarifying the cause of low bioavailability of various drugs.
منابع مشابه
Dmd051680 1514..1521
The purpose of this study was to evaluate the impact of intestinal efflux transporters on the in vivo oral absorption process. Three model drugs—fexofenadine (FEX), sulfasalazine (SASP), and topotecan (TPT)—were selected as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and P-gp and BCRP substrates, respectively. The drugs were orally administered to portal vein– cannulated rat...
متن کاملAssessment of intestinal availability of various drugs in the oral absorption process using portal vein-cannulated rats.
To understand the rate-limiting process of oral drug absorption, not only total bioavailability (F) but also intestinal (F(a) · F(g)) and hepatic (F(h)) availability after oral administration should be evaluated. Usually, F(a) · F(g) of drug is calculated from pharmacokinetic parameters after intravenous and oral administration. This approach is influenced markedly by the estimated value of F(h...
متن کاملExpression of Drug Pump Protein MRP2 in Lipopolysaccharide-Treated Rats and Its Impact on the Disposition of Acetaminophen
The drug pump protein MRP2 is a membrane drug efflux transporter widely distributed in normal and tumor tissues. Its role is thought to be crucial for the disposition of many drugs and their substrates in different tissues. In this study, we aimed to examine the effects of systematic inflammation induced by lipopolysaccharide (LPS) on the expression and function of this transporter in rats. Jug...
متن کاملExpression of Drug Pump Protein MRP2 in Lipopolysaccharide-Treated Rats and Its Impact on the Disposition of Acetaminophen
The drug pump protein MRP2 is a membrane drug efflux transporter widely distributed in normal and tumor tissues. Its role is thought to be crucial for the disposition of many drugs and their substrates in different tissues. In this study, we aimed to examine the effects of systematic inflammation induced by lipopolysaccharide (LPS) on the expression and function of this transporter in rats. Jug...
متن کاملDrug-Drug Interactions: Influence of verapamil on the pharmacokinetics of sitagliptin in rats and Ex vivo models
P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4) play a significant role in the disposition and elimination of drugs. The objective of this study was to investigate the mechanism underlying the interaction between sitagliptin (substrate of P-gp and CYP3A4) and verapamil (known modulator of P-gp and CYP3A4) using in vivo, ex vivo and in situ models. Rats were treated with sitagliptin (10 m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 41 8 شماره
صفحات -
تاریخ انتشار 2013